30,083 research outputs found

    Scattering of Massless Particles: Scalars, Gluons and Gravitons

    Full text link
    In a recent note we presented a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this paper we show that a natural formulation also exists for a massless colored cubic scalar theory. In Yang-Mills, the formula is an integral over the space of n marked points on a sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-like terms dressed with U(N) color structures while the second is a Pfaffian. The S-matrix of a U(N)xU(N') cubic scalar theory is obtained by simply replacing the Pfaffian with a U(N') version of the previous U(N) factor. Given that gravity amplitudes are obtained by replacing the U(N) factor in Yang-Mills by a second Pfaffian, we are led to a natural color-kinematics correspondence. An expansion of the integrand of the scalar theory leads to sums over trivalent graphs and are directly related to the KLT matrix. We find a connection to the BCJ color-kinematics duality as well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We end by considering a special kinematic point where the partial amplitude simply counts the number of color-ordered planar trivalent trees, which equals a Catalan number. The scattering equations simplify dramatically and are equivalent to a special Y-system with solutions related to roots of Chebyshev polynomials.Comment: 31 page

    Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations

    Full text link
    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of nn massless particles are given by integrals over the positions of nn points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein--Yang--Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke--Taylor-like factors of subsets of particle labels.Comment: 18 pages. References and a new section on double-trace gluon amplitudes added in v
    • …
    corecore